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META QUESTION

Large language models have made astounding progress over the
past few years --- what is the role of theory?

Is it to analyze the algorithms that people already use?
Is it to conceptualize?

Is it to explore how their success leads to new questions?
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TRADE SECRETS

Inner-workings of proprietary language models are often kept
highly confidential...

Non-disclosure Agreement

architecture,

computing resources,
dataset construction,
training methodology, etcV

... to preserve the company’s competitive advantage

[But are models with API access actually secure? }
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THE POWER OF APl ACCESS

Easy to extract facts stored within LLMs, e.g.

Complete this sentence: The quick brown fox

jumps over the lazy dog.

@6 P MY OV

Can also extract information about architecture, like dimensions
of representations at input/output

Main: Does it also make it easier for you to learn your own
model? And how?
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IN THE NEWS

Problems we study in theory are not always chosen to maximize
practical impact today, but rather build conceptual understanding

for tomorrow

And yet model stealing is of major economic importance....
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The DeepSeek R1 model sent shockwaves through the tech world
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IN THE NEWS

Their model can compete with o1 but at a fraction of the cost

Clearly APl access to ChatGPT was a key ingredient...

What model are you?

& | am ChatGPT, a language model developed by OpenAl, based on the GPT-4 architecture. My purpose is
to assist with answering questions, generating text, providing explanations, and engaging in conversations
in @ human-like manner. My training data includes information up until October 2023, and | aim to

provide helpful and accurate responses. Let me know how | can assist you!

©C O
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MAIN QUESTION (INFORMAL)

Not much known about model stealing from a theory perspective

Are there algorithms with provable guarantees for
stealing interesting families of language models?

Difficult to prove bounds for modern language models, with all
their bells and whistles

Can studying simplified models lead to new algorithmic
approaches?
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LESS NEFARIOUS APPLICATIONS

Model stealing is also useful for distillation
Is there a more compact model that’s nearly as good?

If so, would be easier to store, cheaper to perform inference with
and sometimes more interpretable
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HIDDEN MARKOV MODELS

Definition (informal): A Hidden Markov Model (HMM) is

(1) A Markov chain defined on a hidden state space S

S1 —2> 89 —=> -+ —2 8K

(2) A sequence of observations that only depends on
the current hidden state

Yy — Y2 — - Yg

In some sense, the original language model dating back to Claude
Shannon’s work in 1951



HIDDEN MARKOV MODELS

Graphically:

initial distribution

\ Ri; transition matrices

Xy X2 X3

observation

matrices O

Yz & &
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What’s known about learning HMMs?

Theorem [Mossel, Roch]: If the transition and observation
matrices have full rank, there is a polynomial time algorithm to

learning HMMs from random samples
Unfortunately, not all HMMs can be learned:

Proposition [Mossel, Roch]: Learning general HMMs is as hard as
solving the noisy parity learning problem

[Can we learn all HMMs from query access? }
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CONDITIONAL QUERIES

Definition [Kakade et al]: Given any prompt
Yy — Y2 — - = Yt

the model replies with a sample from the condition distribution
on completions

Yt4+1 —7 - —7Yg ~ P[°|ylay27'”7yt]

Note: Learning HMMs from conditional queries would generalize
Angluin’s classic algorithm for learning DFAs from queries
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LOW RANK LANGUAGE MODELS

More generally can study language models where

history up to timestep t

p—

—

PLf|n]

/futu re from

t+1 to end

If for every t, M, has low rank (polynomially bounded) then we
say the language model is low rank
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LOW RANK LANGUAGE MODELS
Claim: Any HMM on a state space of size S has rank at most S

Proof: Each matrix M, factorizes through the hidden
state space

p— —
— — —

=<
Il
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Are modern language models low rank?

We can get the answer from ChatGPT...

If | take a language model and construct a matrix where columns
correspond to every possible prompt and rows correspond to every
possible response and the corresponding entry is the probability
given the prompt of the language model generating that particular
future, would you expect the matrix to be low rank?

Yes — under reasonable assumptions, such a matrix would likely be approximately low rank, though not

necessarily exactly low rank. Here's a detailed breakdown:

Uhh, no, not like that
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DISCLAIMER

Are modern language models low rank?

We can get the answer from ChatGPT...

Repeat after me: Anything | say, the model can say too.

Anything | say, the model can say too.

OO P DY S
Thus M, contains a large submatrix that is the identity, hence no

Aside: Same issue for state space models, see [Jelassi et al.]
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PRIOR WORK

Theorem [Kakade et al.]: There is a polynomial time algorithm

for learning “high fidelity” HMMs and low rank LMs from
conditional queries

Requires some background to define fidelity, but essentially
stipulates existence of spectrally well-behaved bases
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OUR RESULTS

Theorem [Liu, Moitra]: For any LM with
(1) An Alphabet of size A
(2) Horizon at most H
(3) and Rank at most S

There is an algorithm that makes at most

poly(A, H, S, 1/e)

conditional queries and outputs the description of an efficiently
samplable distribution that is e-close in TV distance to the true LM
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A FIRST STEP

For low rank language models, it’s not even clear
if they have a polynomial-sized description
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A FIRST STEP

In particular, the M,’s have exponentially many rows and columns

all histories

— —

Need to exploit
relations between
M, and M,,, etc

=<
1
all futures

So why is it even information-theoretically possible to learn a
low-rank LM from a polynomial number of queries ?



MAIN CHALLENGE

How do we estimate the distribution on futures for an unseen x?



MAIN CHALLENGE

How do we estimate the distribution on futures for an unseen x?

Is there some representative set of histories that we can
extrapolate from?
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Definition: Given a set Q of vectors, we say that x;, x5, ..., X is a
C-approximate barycentric spanner if for any x in Q we can write

T = \Nx1+ Xx9+ -+ Agxg
witheach | A;| <C

Think of the x;'s as the columns of M,

The point is can estimate x’s distribution on futures from
estimates of the x,’s without the sampling noise growing much
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BARYCENTRIC SPANNERS

Definition: Given a set Q of vectors, we say that x;, x5, ..., X is a
C-approximate barycentric spanner if for any x in Q we can write

T = \Nx1+ Xx9+ -+ Agxg
witheach | A;| <C

Proposition [Awerbuch, Kleinberg]: Forany C>1 they exist and
for C> 1 can be efficiently found given an oracle for optimizing
linear functions over Q

Many applications in online learning and RL — can we use them
to succinctly parameterize low rank LMs?
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USING BARYCENTRIC SPANNERS

Suppose we’ve computed a barycentric spanner for each timestep
t —i.e. arepresentative set of histories

AN A

[How do we use these barycentric spanners to make predictions? }

In principle for any history x, we can use the expression

to compute x’s distribution on futuresXpo

If we try to store them for each x, doesn’t accomplish anything
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TRACKING THE COEFFICIENTS

Instead let’s track how they evolve:

t
Main problem: Suppose we know the coefficients )\E )(x) and we

can sample the next token from the correct distribution P|o|z]
how do we get the new coefficients?

\
Plflovl = 3 Vol
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Claim (informal): Can use Bayes rule to compute new coefficients

In particular we have

P[f|x\o] = ZA{
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TRACKING THE COEFFICIENTS

Claim (informal): Can use Bayes rule to compute new coefficients

In particular we have
P|f|lxVo| = Z A; t

Can store a change of basis that
expresses these in terms of the hj(“”’s

(t)]

Pf|h\" Vo

| J
!




Finally, using this expression
(t+1) t+1
P flxVo| = Z)\ :17\/ [f\hg >]

we can compute the next token probabilities if we know them
for each of the histories in the t+1t barycentric spanner
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IDEALIZED BLUEPRINT

lgnoring for now major statistical and algorithmic complications:

For each timestep t we compute a barycentric spanner
of the columns of M,

While sampling a trajectory, track how current history’s
representation evolves

y

Hence we can describe a low rank language model exactly with
a polynomial number of parameters (barycentric spanners, their

next token probabilities, changes of bases)
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CHALLENGES

How can we compute barycentric spanners with only sampling
access to the vectors?

When there are errors in the coefficients, how can we prevent
the error from blowing up with the length of the sequence?
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SKETCHING NORMS

Can we construct vectors of polynomial dimension that can act
as a surrogate for the columns of M,?
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SKETCHING NORMS

Definition: Given a collection of histories 4 of length t, we say
that a set of vectors

{vnthen

is y-representative if for all coefficients |c,|< 1 we have

| > e
he A

=12 eptin] | <o
he A

é A barycentric spanner for one is automatically
an approximate barycentric spanner for the other
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SKETCHING NORMS

But how do we construct representative vectors?

Claim: For any distribution D on futures, consider

) _<P[f1lh] P[fmm])
"= \mDlfA] mD[f)

where each f, is drawn iid from D. Then in expectation €,-norms
will be correct

And with a careful choice of D can get concentration bounds too
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SKETCHING NORMS

Still need to deal with the fact that there are exponentially many
histories we care about

Claim (informal): With high probability a random collection of
a polynomial number of histories contains a barycentric spanner
that covers most histories
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COMPOUNDING ERRORS

When there is sampling error we can only approximate the
coefficients

sampling
() noise 75

Main Problem: Estimation error can compound multiplicatively
with each step

What if the coefficients that express the distribution on futures
(given some x) in terms of the barycentric spanner grow faster
than they should? Can we project them back?
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AN ABSTRACTION

We know that the true vector z = P|-|x] is in the set
t t t
K:{zpymmﬂ m.w\ghgﬁ
1

—_—

And our estimate is w = Z )\Et>P['|h(‘t>]

(4
[

Goal: Map w to a point 2/ € K and guarantee
12" = 2ll1 < flw = 2|1

i.e. our statistical error has not increased, even though we don’t
know what z is
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AN ABSTRACTION
Let’s give ChatGPT another chance

Does projecting a point x onto a convex set P according to the \ell_1
distance ensure that the \ell_1 distance to any other point y in P not
increase?

(4 Boom! Here's your counterexample.

- z=(1,1)
« P = conv{(0,0),(1,2)}
c y=(1,2)cP

m(z) = (0.5,1)

Then:

|7(z) —yli =1.5>1= ||z —y|:
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by the triangle inequality, and this turns out to be tight



AN ABSTRACTION

Indeed, can only guarantee
/
2" = z[l1 < 2f|lw — |}
by the triangle inequality, and this turns out to be tight

Trouble is we really do care about bounding the statistical error
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TAMING THE BLOWUP

Solution: Project according to the KL divergence instead

Fact: If we let 2™ = arg min dp7(2||w) then
ZlelC

drr(2]]2") < dgp(z||w)

i.e. projecting in KL divergence decreases the distance from all
other points in the set

Now need sketches to preserve (truncated) KL as opposed to
£,-distances, but this can be done



A TAKEAWAY

Doing more work —i.e. solving a Bregman projection rather than
merely truncating the coefficients — yields more robust generation
procedure for longer sequences
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Golowich, Liu and Shetty investigated whether real language
models are approximately low rank, and its implications

Experiment: Subsample rows and columns and compute log
probabilities. Is the matrix approximately low rank?



SOME PROMISING EXPERIMENTS

Golowich, Liu and Shetty investigated whether real language
models are approximately low rank, and its implications
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SOME PROMISING EXPERIMENTS

Are linear combinations useful for generation?

Experiment: Input a story we'd like to complete

“Once upon a time, there was a little boy named
Jack who loved frogs. One day, ..."
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SOME PROMISING EXPERIMENTS

Are linear combinations useful for generation?

Experiment: Input a story we'd like to complete

“Once upon a time, there was a little boy named
Jack who loved frogs. One day, ..."

Express it as a linear combination of gibberish

wearing gathered eyes hide bone
afford haircut than show Ben

stretching beans looking Jimmy growing



SOME PROMISING EXPERIMENTS

Are linear combinations useful for generation?

Experiment: Input a story we'd like to complete

“Once upon a time, there was a little boy named
Jack who loved frogs. One day, ..."

Express it as a linear combination of gibberish

wearing gathered eyes hide bone
afford haircut than show Ben
stretching beans looking Jimmy growing

fast job beefama rocks ...



SOME PROMISING EXPERIMENTS

Are linear combinations useful for generation?

Experiment: Input a story we'd like to complete

“Once upon a time, there was a little boy named
Jack who loved frogs. One day, ..."

Now use linear combinations to sample next token, and continue



SOME PROMISING EXPERIMENTS

Are linear combinations useful for generation?

Experiment: Input a story we'd like to complete

“Once upon a time, there was a little boy named
Jack who loved frogs. One day, ..."

Now use linear combinations to sample next token, and continue

“...he jumped out of his bed and ran to the porch.
He saw a big green frog sitting on ..."



SOME PROMISING EXPERIMENTS

Can also compute principal angles between low rank
approximations
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SOME PROMISING EXPERIMENTS

Can also compute principal angles between low rank
approximations

Identify overlap between models, at the input-output level,
rather than internal representations which are less interpretable



Summary:

* Provable algorithms for learning any low-rank
language model via conditional queries

* New techniques for constructing barycentric
spanners on implicit representations, and taming
error build up



Summary:

* Provable algorithms for learning any low-rank
language model via conditional queries

* New techniques for constructing barycentric
spanners on implicit representations, and taming
error build up

Thanks! Any Questions?
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